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In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes
a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are
considered in this equation. Its solution has a Lorentzian form, consequently this equation characterizes a
superdiffusion like a Lévy kind. In addition an equation that unifies the porous media and the logarithmic
diffusion equations, including a generalized diffusion equation in fractal dimension, is obtained. This unifica-
tion is performed in the nonextensive thermostatistics context and increases the possibilities about the descrip-
tion of anomalous diffusive processes.
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I. INTRODUCTION

Diffusion is a very usual phenomena in nature and it hap-
pens, in general, when the system goes to an equilibrium
state. Therefore it is of fundamental relevancy in physics,
chemical, and biological processes. The linear dependence in
the time growth of the mean square displacement �x2�t��� t,
or alternatively in the variance �when �x��0�, is the finger
point of the Brownian movement and usual diffusion. It is a
direct consequence of the central limit theorem and the Mar-
kovian nature of the underlying stochastic process �1�. In
contrast, the anomalous diffusion is in general characterized
by a nonlinear variance growth in the time, that is to say, the
diffusion will be considered anomalous when the behavior
goes out the former. This kind of diffusion has a fundamental
role in the analysis of a large class of systems such as plasma
diffusion �2�, diffusion in turbulent fluids �3,4�, fluids trans-
portation in porous media �5�, chaotic dynamics �6�, non-
Gaussian behavior of the heartbeat �7�, diffusion on fractals
�8–11�, anomalous diffusion at liquid surfaces �12�, in the
study of vibrational energy in proteins �13�, among other
physical systems. In the anomalous behavior description the
variance growth can be a power law kind ���x�2�� t�, or
even present another pattern. In this classification, when �
�1, we have a superdiffusive process, ��1, a subdiffusive
one, and �=1 describes a usual diffusion. Furthermore, in an
anomalous diffusive process, the variance can be not finite,
describing a Lévy process, although it presents a well-
defined index that characterizes such a process �14�. The
description of this kind of process is based on the validity of
the generalized central limit theorem, termed Lévy-
Gnedenko, which states that, by N-fold convolution, a distri-
bution with divergent lower moments tends to one of the
Lévy stable class �15�.

It is possible to simulate the anomalous behavior of the
diffusion applying generalizations on the ordinary diffusion
equation. It can be performed by introducing an appropriate
time-dependence �16,17� or spatial dependence �8,9,18,19�
in the equation’s coefficients. Also we can apply fractional
derivatives �20–23�. However, the introduction of nonlineari-
ties reveals a large set of possibilities to describe anomalous

diffusive processes. An interesting characteristic of the non-
linear Fokker-Planck equation is that its stationary solutions,
and some particular time-dependent solutions, are such that
maximize the Tsallis entropy, a nonextensive entropic form
proposed in the last years by Tsallis �24,25�. This effort be-
comes necessary when the Boltzmann-Gibbs statistics fail,
for instance, in the presence of long range interactions or
memory effects and fractal phase space structure �see Ref.
�26� for a recent review�. The nonextensive mechanics sta-
tistics has shown a very fruitful scenario to study anomalous
diffusion. In this way, several works dealing with anomalous
diffusion were developed in such context. The connection
between this formalism and the nonlinear Fokker-Planck
equation was first pointed out by Plastino and Plastino �27�.
The results were enlarged by Tsallis and Bukman �28�, in-
cluding a linear drift term. A phenomenological microscopic
dynamics of the nonlinear Fokker-Planck equation is pre-
sented in �29�, as well as a nonlinear Fokker-Planck equation
with state-dependent diffusion �30�. A Tsallis maximum en-
tropy solution of the nonlinear Fokker-Planck equation ap-
plied to the study of correlated anomalous diffusion �31,32�,
nonlinear fractional derivative Fokker-Planck like equation
�22,23�, aging in nonlinear diffusion �33�, anomalous diffu-
sion with absorption �34�, and anomalous diffusion in a frac-
tal dimension �18,19�, are some examples among other ref-
erences. In this direction, the generalized thermostatistic,
based on the nonextensive Tsallis entropy, becomes a natural
scenario as the correlated anomalous diffusion as the anoma-
lous diffusionlike Lévy �variance is not finite� �35–38�. In
this context, the index of nonlinearity joined to the nonlinear
Fokker-Planck equation, in the correlated anomalous diffu-
sion case, can be connected to the entropic index q of the
Tsallis entropy and with the respective generalized distribu-
tions. This relation is just q=2−�, where � is the nonlinear
index, and it is easy to verify that when q=2 the diffusive
term becomes trivial. We will show that this difficulty can be
overcome by a logarithmic diffusion equation, or, in other
words, this equation represents an alternative for the limit
case where the exponent that characterizes the nonlinearity
of the diffusive term goes to zero. In this way, the logarith-
mic diffusion equation is just inspired in nonlinear diffusion
equations like Fokker-Planck �19,27,28�. We will show that
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the nonstationary solution for the logarithmic equation is a
Lorentzian, and this implies that the second moment is not
finite. It indicates that this diffusion equation is related to
superdiffusive processes, of the Lévy kind. On the other
hand, in the nonextensive statistical mechanics scenario it is
possible to unify the correlated anomalous diffusion equa-
tion, or porous media equation, and the logarithmic diffusion
equation. Thus we enlarge the description of diffusive pro-
cesses by a unified equation that congregates the correlated
anomalous diffusion and a Lévy like one.

This work is structured as follows. In Sec. II we will
present the logarithmic diffusion equation and its exact solu-
tion. In Sec. III this equation is solved including a linear drift
term. In the following section it is solved when an absorption
term is present. We will obtain in Sec. V the stationary so-
lution, and in Sec. VI we will perform the unification of the
porous media and logarithmic diffusion equations. The con-
nection with the diffusion on fractals is included. Finally, in
the last section we will present the conclusion and final re-
marks.

II. LOGARITHMIC DIFFUSION EQUATION

To motivate our discussion, we will first consider the po-
rous media equation,

��

�t
= D�2��. �2.1�

It has been employed in the analysis of percolation of gases
through porous media ��	2� �39�, thin saturated regions in
porous media ��=2� �40�, a standard solid-on-solid model
for surface growth ��=3�, thin liquid films spreading under
gravity ��=4� �41�, among others �42�. A solution of Eq.
�2.1� is the generalized q-Gaussian �28�,

��r,t� =
1

Z�t�
�1 − �1 − q�
�t�r2�1/�1−q�. �2.2�

By direct substitution of Eq. �2.2� into Eq. �2.1� it is easy to
verify that

d


dt
= − 4D�
2Zq−1, �2.3�

1

Z

dZ

dt
= 2D
�Zq−1, �2.4�

and we obtain 
�t�� t−2/�3−q� and Z�t�� t1/�3−q�. Of course,
when q→1 we recover the results for the usual diffusion.
This solution is obtained taking into account the relation q
=2−�. And what happens when q=2? It is obvious that in
this case the right side of Eq. �2.1� vanishes all the time and
Eq. �2.2� is not the solution now. However, Eq. �2.2�, for q
=2, recovers a very important function: the Lorentzian. A
question arises: what would be the shape of the nonlinear
diffusion equation whose solution was a Lorentzian?

It is known that ln x decreases more slowly than any
power xr, when r goes to zero positively, so we are influ-
enced to substitute �� by ln � in Eq. �2.1� when �→0. In this

perspective, we introduce the logarithmic diffusion equation

��

�t
= D

�2 ln �

�x2 . �2.5�

This equation emerges in plasma physics �43� and, in par-
ticular, has been predicted for cross-field convective diffu-
sion of plasma including mirror effects �44�. The same equa-
tion describes the expansion of a thermalized electron cloud
�45� and also arises in studies of the central limit approxima-
tion to Carleman’s model of the Boltzmann equation �46,47�.

It is verified directly that Eq. �2.5� presents the Lorentzian
solution

��x,t� =
1

Z�t�
1

�1 + 
�t�x2�
. �2.6�

The substitution of Eq. �2.6� in Eq. �2.5� shows that 
�t� and
Z�t� obey the equations

1

Z2

dZ

dt
= 2D
 , �2.7�

1

Z2

dZ

dt
+

1


Z

d


dt
= − 2D
 . �2.8�

They can be decoupled taking account of the relation Z
1/2

=Z0
0
1/2 which is valid all the time. The solutions are


�t� = 
0�1 + 2D
0Z0t�−2 �2.9�

and

Z�t� = Z0�1 + 2D
0Z0t� . �2.10�

It is interesting to point out that for the Lorentzian the vari-
ance is not finite. This fact, characteristic of the Lévy distri-
butions, indicates that the logarithmic equation is associated
to superdiffusive regimes. In fact, a dimensional analysis of
the logarithmic diffusion equation �2.5� and the Lévy diffu-
sion equation �� /�t=D��� /��x��, with �=1, leads to the
common ballistic behavior in the sense that x scales as t.
Moreover, Eq. �2.5� is a particular �=1 case of

��

�t
=

�

�x
�−���

�x
, 0 � � � 2. �2.11�

When the coefficient diffusion D��� �or the thermal coeffi-
cient of conductivity� can be approximated as �−�, its diver-
gence for small � causes a much faster spread of mass �or
heat� than in the linear case ��=0�, justifying the terminol-
ogy superfast diffusion to these processes �48�.

For the N-dimensional case, Eq. �2.5� assumes the shape

��

�t
= D�2 ln � , �2.12�

with �2=�i=1
N �2 /�xi

2 and whose Lorentzian solution, ���x� , t�,
presents


�t� = 
0�1 − 2�N − 2�D
0Z0t�2/�N−2� �2.13�

and

Z�t� = Z0�1 − 2�N − 2�D
0Z0t�N/�2−N�. �2.14�
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III. PRESENCE OF EXTERNAL FORCES

Now we analyze Eq. �2.5� describing a process that in-
cludes a linear drift term �external force� F�x�,

��

�t
= D

�2

�x2 ln � −
�

�x
�F�� . �3.1�

For the case F�x�=k1−k2x, the solution of Eq. �3.1� is the
drifted Lorentzian

��x,t� =
1

Z�t�
1

	1 + 
�t��x − x0�t��2

. �3.2�

In fact, 
�t�, Z�t�, and x0�t� obey the equations:

dx0

dt
= k1 − k2x0, �3.3�

1




d


dt
= − 4D
Z + 2k2, �3.4�

1

Z

dZ

dt
= 2D
Z − k2. �3.5�

Equation �3.3� does not depend on the index related to the
nonlinearity, therefore it arises not only in the usual diffusion
equation but also in the porous media ones ���1�. Thus the
solution of Eq. �3.3� is

x0�t� = �x0�0� +
k1

k2
�ek2t − 1��e−k2t. �3.6�

In this turn, the solutions of Eqs. �3.4� and �3.5� have the
form


�t� = 
0�1 − g�t��−2 �3.7�

and

Z�t� = Z0�1 − g�t�� , �3.8�

where

g�t� = � �k2 − 2D
0Z0�
k2

�ek2t − 1��e−k2t �3.9�

with g�0�=0.

IV. LOGARITHMIC EQUATION WITH SOURCE TERM

We can consider the presence of a time-dependent source
term. In this case, Eq. �2.5� is written as

��

�t
= D

�2

�x2 ln � − ��t�� . �4.1�

The source term in this equation can be removed by an ap-
propriate change in the solution

��r,t� = e�−
0
t ��t��dt���̂�r,t� �4.2�

and we rewrite the time variable. Thus, the solution of Eq.
�4.1� is

��x,t� =
1

Z„
�t�…�1 + 
„
�t�…x2�
exp�− �

0

t

��t��dt�� ,

with 
(
�t�) and Z(
�t�) being of the form �2.9� and �2.10�,
where D=1 and t is replaced by 
�t�=
0

t D̃�t��dt�, with D̃�t�
=D exp�
0

t ��t��dt��. We can to extend this solution for the
N-dimensional case by employing Eqs. �2.13� and �2.14�.

V. STATIONARY CASE

We define now the probability density current

J = F� − D
� ln �

�x
�5.1�

so that Eq. �3.1� represents a continuity equation:

��

�t
+

�J

�x
= 0. �5.2�

In the stationary case, dJ /dx=0, and this implies J=cte
=0, since we are applying the condition that the current van-
ishes at infinity. This fact permits us to write, considering
F=−dV /dx,

d ln �

dx
= −

1

D

dV

dx
� �5.3�

whose solution is

� =
1

1 + 
V
, �5.4�

where it was assumed V�0�=0, 
=�0 /D, and ��0�=�0=1.
Note that the structure �5.4� is preserved in the
N-dimensional case.

The solution �5.4� is the q=2 case of the generalized ex-
ponential

� = �1 − �1 − q�
V�1/�1−q�, �5.5�

which, in this turn, recovers the Boltzmann distribution in
the limit q→1. Furthermore, we remind that the Boltzmann
distribution is the stationary solution of the usual diffusion
equation, so Eq. �5.4� is analogous for the logarithmic equa-
tion.

VI. UNIFICATION OF POROUS MEDIA AND
LOGARITHMIC EQUATIONS

The unification of Eqs. �2.1� and �2.12� will be accom-
plished by using the generalized logarithmic function, the
q-logarithm, defined as

lnq x =
x1−q − 1

1 − q
. �6.1�

In this way, the unified equation proposed in this work pre-
sents the following structure:

��

�t
= D̄�2 lnq−1 � , �6.2�

and it is clear that, when q→2, the function ln1 recovers the
logarithmic one. When q=2−��2, we have lnq−1= ���
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−1� /� and Eq. �6.2� reobtains the porous media equation

�2.1� with D= D̄ /�.
We can consider the nonlinear diffusion equation with ra-

dial symmetry, taking account of the spatial-dependence in
the diffusion coefficient, r−�, and a nonintegral dimension d
�18�,

��

�t
= D�̃��, �6.3�

with

�̃ � r−�d−1� �

�r
rd−1−� �

�r
. �6.4�

With the operator �̃ written like this there are no restrictions
for the possible values for d. In this way, d can be interpreted
as a fractal dimension in an embedding N-dimensional space.
Equation �6.3�, in the �=1 case, recovers the diffusion equa-
tion introduced in Refs. �8,9�. Analogously to Eq. �6.2�, we
enlarge the applicability domain of Eq. �6.3� and we have

��

�t
= D̄�̃ lnq−1 � , �6.5�

with �̃ defined by Eq. �6.4�. The ansatz

��r,t� =
1

Z�t�
�1 − �1 − q�
�t�r��1/�1−q�, �6.6�

with �=2+�, remains valid and substituted in Eq. �6.5� con-
ducts to the equations

dZ�t�
dt

= D̄�d
�t�Zq�t� ,

d
�t�
dt

= − D̄�2
2�t�Zq−1�t� . �6.7�

Such equations are decoupled and solved and their solutions
are


�t� = 
0�1 + At�−�/��+d�1−q�� �6.8�

and

Z�t� = Z0�1 + At�d/��+d�1−q�� �6.9�

with

A = D̄��� + d�1 − q��
0Z0
q−1, �6.10�


0=
�0� and Z0=Z�0�. Thus we obtain the stretched Lorent-
zian if ��2 and short if ��2. In fact, for q=2, the solution
is

��r,t� =
1

Z�t�� 1

1 + 
�t�r�� , �6.11�

where 
�t�=
0�1+At�−�/��−d� and Z�t�=Z0�1+At�d/��−d�. Ob-
serve that when �=0 and d=N=1 we obtain the results �2.2�
for q�2, and Eq. �2.6� for q=2.

We pointed out that the factor �2−q� implicated Eqs. �2.1�
and �6.3� became trivial at the value q=2. With our strategy
we eliminate this undesirable behavior. From the performed
generalization in this section, we can conjecture a nonlinear
diffusion equation, that presents ��, can be extended to �
=0, substituting �� by lnq−1 �, with q=2−�. Thus, in a gen-
eral way, we can unify all the equations presented in this
work by the equation

��

�t
= �

i,j=1

N
�

�xi
�Dij

�

�xj
lnq−1 �� − �

i=1

N
�

�xi
�f i�� − ��t�� .

�6.12�

VII. CONCLUSION

In this work we enlarged the application domain of the
porous media equation for the �=0 case and we presented
the logarithmic diffusion equation as an alternative proce-
dure to this limit case. Its solution has a Lorentzian form and
it can characterize superdiffusive processes, of Lévy kind. A
unification of porous media and logarithmic diffusion equa-
tion is obtained, and in a more general form, with the fractal
nonlinear diffusion equation. This unified description is per-
formed in the nonextensive statistical mechanics scenario.
This accomplishment represents progress in the formal de-
scription of diffusive processes and in its solutions as well.
In this direction, the final proposed equation interpolates oth-
ers with a consecrated position in the literature. It is desirable
that the equations presented in this work, or in particular
special cases of them, show physics situations in which there
is competition among different mechanisms that generate
anomalous diffusion.
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